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0. Introduction

Multistate structure functions have been discussed by Barlow and Wu
(1978), El-Neweihi, Proschan and Sethuraman (1978), Griffith (1980) and
Block and Savits (1982). All of'these papers have limited their discussion
to the case where the state space is finite.

In this paper we consider the situation where the structure function is
defined on some subset of R". Results similar to those obtained in the other
papers, especially Block and Savits (1982) are derived here. The complication
is that topological considerations must be considered.

In Section 1, we obtain an integral representation for a general multi-
state structure function on R:. Properties of the upper sets associated
with the function are discussed and the integrand in the representation is
described in terms of the extreme points of its upper sets. This gives the
extension of the min path representation from the finite case. Minimality
of the representation is also demonstrated.

In Section 2, we consider the more difficult case of the function defined
on some A C R:. Results similar to those in Section 1 as well as bounds
are obtained.

The decomposition obtained in Sections 1 and 2 are applied to systems
of the type discussed by Barlow and Wu (1978). As a second application,

a representation for nondecreasing homogeneous functions is obtained.

In general we limit our discussion to sets A ¢ Rr". By Ao, A and B(A)

we mean the topological interior, closure and boundary of A, For

X = (xl,...,xn), y = (yl,...,yn) in Ifl,lg < y means X fori=1,...,n,

129y

X < y means X for i =1,...,n, and x § Y means x 2 y and x # y. We also
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Ly@ = {y: y<x b, Ly = {g: y<x b
U@ = {y: y>x }, Up@®) = {y: y>x }.

Finally we say a function ¢: A > R® where A is a Borel measurable subset of

Rn is a multistate monotone structure function (MMS) if ¢ is Borel measurable

and nondecreasing (i.e., x < y implies 2(x) < ¢(y)). A set Ac R" is said

to be an upper (lower) set if xe¢ A and x < (>) y implies ye A.

1. The R” Case
.—.—+__.——
For purposes of exposition we first consider the special case of a

multistate monotone structure function ¢: [O,m)n + [0,°) which is assumed to

be right~continuous i.e. for each x¢ ]Ri and for each € >0, there is a § >0 such
that for x<y < x + 81, |f(x)-f(y)| <e. Here we will obtain an integral represen-
tation for ¢ in terms of binary valued functions each of which can be expressed

via its "min path sets”. The min cut representation leads to technical diffi-
culties and hence will be deferred until Section 2.

1.1 Integral representation

Let ¢: [0,)" - [0,») be a right-continuous MMS. For each t > 0 we let
Ut = {x: o(x) > t}.
(1.1) Proposition. Each Ut is a closed upper set and Ut c Us for t > s > 0.

Proof. We need only show that U  is closed since the other results are
obvious. Suppose that #(x) < t. It follows by right-continuity that there
exists z > x such that ¢(z) < t. Hence for every 0 < y < z we have

¢(y) < t. Thus the complement of Ut is open (relative to [O,w)n) and so Ut

is closed.
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We now define a binary valued function ¢ by
(1.2) d(x,t) = IUt(gt_) = IEO,¢(§)](t)
for all t > 0, x > 0, where I, is the indicator function of the set A. It
is clear that for fixed t, ¢ is Borel measurable and nondecreasing in x,
while for fixed x, ¢ is left-continuous and nonincreasing in t. Also
o(x) > t if and only if ¢(x,t) = 1.

The next result follows easily and is analogous to the finite state

decomposition given in Theorem 2.8 of Block and Savits (1982).

o

(1.3) Theorem. o(x) = J ¢ (x,t)dt.
0

In order to obtain a representation of ¢ in terms of its "min path sets"

we need to first investigate the nature of upper sets in more detail.

1.2 Upper sets and extremal points

We first list some elementary facts about upper sets.

(1.4) Proposition. Let A, {A(t): te T} be upper sets where T is some index

set (i.e., Tc R).

(i) u A(t) and n A(t) are upper sets.
teT teT
(1i) A= U UQ(§).
X€A

(111) A and A° are upper sets.

Proof. The first two statements are obvious. Suppose now that x¢ A . Then

there exist x> < A with x X If y > X, we set Y, <X + (y - x). Clearly

Y, € A and Y, T ¥ i.e., y e A and so A is an upper set. Suppose now that

X € A°. Then there exists some § > O such that N, (x) = {z: lzi- < § all i}

X4
A. It thus follows that if y > x, then NG(X) < A because whenever ze N (y),

n

in

>z - (y-x) € N‘s.(l{_).. Hence y ¢ A° and so A® is an upper set.
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Thus if A is any set, the intersection of all closed upper sets con-
taining A is a closed upper set containing A, which we call the closed
upper hull of A. It is the smallest closed upper set containing A.

We now introduce some further concepts analogous to the notion of ex-
treme points for convex sets. Let A be any upper set. We call x a lower
extreme point of A if LQ(E‘.) n A = {x} and we denote the set of all lower

extreme points of A by EL(A). Note that EL(A) must be contained in the

topological boundary of A.

Before we prove our main result we need the following lemma.

(1.5) Lemma. Let A be a closed upper set in R_r: = |'.0,°°)n and let EL(A)
®
‘ be its set of lower extreme points. Then x ¢ A if and only if x > y for 1

some y € EL 4).
Proof. Clearly we only need prove that if X€A then x>y for some yeE (A) So )
—_— x> L .

let x=(x;,... - :
stx=(xp..ox) €A Sety) =inflO0cxcx: (x,%p,....% ) € A}. Since

A is closed it follows that (yl,xz,...,xn) € A. Now set ¥y = inf{0 < x < X, 1

(yl,x,x3,.,.,xn) € A}. Again we have that (yl,yz,x3,...,xn) € A. Thus induc- 1

P

tively we can find y = (yl,...,yn) < x such that (yl,...,yi, xi+1,...,xn) €A
for all i=1,...,n. We now claim that ye EL(A). Suppose that g_eAnLQ(}_'_).

Then zcA and z <y < x. If z#y, then they differ in at least one co-

ordinate. Let the first such coordinate be i. Then ZySYysreesZy g =

Yi-1°%4 < Y4 ixi. This implies that (yl’”"yi-l’zi’xi+1""’xn) € A.

But this contradicts the definition of vy and so z = y. Hence y ¢ EL a).

(1.6) Theorem. Let A be a closed upper set in R:l_. Then A is the closed

upper hull of its lower extreme points. Furthermore, we have A = U UQ(Z.)-

ye EL (A)




Proof. Let B be the closed upper hull of EL(A) (i.e., B = n{U: U closed upper

set and U > EL(A)}). Since A = v U _(y) and A is closed, it follows that

yeA Q
A> v UQ(X) >B> v UQ(X)- But according to Lemma 1.5,
ye& (A) yeE (4)
Ac vy UQ(Z) and we are done.

ye EL (a)

(1.7) Corollary., 1If A is a closed upper set in R_?_ and IA is its indicator
function, then
(1.8) IA(§) =  max min o y (x)

erL(A) l<i<n 771

where oy (x) =11if x, > t and 0 otherwise.
, b= i-

Proof. Now I,(x) =1 <= x¢A < x > y for some y ¢ EL(A) <= q (x)=1
for all i = 1,...,n, some y ¢ EL(A).
(1.9) Remarks. (i) If we restrict x in (1.8) to ]R_t:_ ,» then we need only take

the minimum over all i such that Y4 # 0; (ii) the results (1.5), (1.6) and

(1.7) remain valid for any closed upper set in RrR" which is lower bounded
i.e. there is a ye¢ R" such that y<x for all x in the set; (iii) in case A

is an open upper set in R" which is lower bounded we have the analogous re-

e ARt S S SRR A 3 SUEL ey

sult that A = U Uo(l) .
leEL(A) Q

This is true since if x €A and A is open, there exists some z < x with

Z2 € Ac A, Hence there exists y € EL(K) = EL(A) such that y < z by Remark (ii)
applied to Lemma 1.5. Consequently x € US(Z)~ On the other hand, if
r o

3 X e UQ(.Y.) for some y € EL(A), then x > y. But y € A and so there exists

< > c A with + y. Thus eventually x > and so x € A.
T SARS x>y, x
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We conclude this subsection by showing that the representation (1.8)

is minimal.

(1.10) 1lheorem. Let A be a closed upper set in R:. Suppose we can write

I,(x) =max min a (x)
A yeE 1l<i<n 1,y

for some subset E of R:. Then E o EL(A)'

Proof. Let z ¢ EL(A)' Since z € A, I,(z) = 1 and so there exists some
y € E such that %y (z) =1 for all i =1,...,n; 1.e., 2 > y. Now if
b
i

z#y, theny ¢ A since L _(z) n A = {z}. But then IA(X) = 0, which contra-

Q

dicts the above representation assumption. Hence z =y and so E > EL a).

1.3 Min path representation

We now combine the results of Sections 1.1 and 1.,2. Let <I>:[0,°°)n +> [0,=)

be a right-continuous MMS. Then according to Theorem 1.3 we have

d(x) = J ¢(x,t)dt for all x € ]Rn, where ¢(x,t) =1
= 0 = =% = U,
and Remark (1.9i) we can write

(x). But from (1.8)

(1.1D ¢(x,t) = max min o, v (x)
N [
yeP, iy #0 i
where Pt = EL(Ut)' Note that y ¢ Pt if and only if ¢(y) > t and ¢(2) < t
for all z <y, z # y. Thus we could call such y an upper critical vector
for level t of ¢ and {i: yi#O} the corresponding min path set. Hence the

result (1.11) is analygous to the min path representation in the finite

state case.

2. Generalizations

In order to obtain a min cut representation for ¢ in (1.2) and also in
order to be able to deduce the known results for the binary or finite state
case we are forced to consider a more general setting. So let ¢: A [0,x)

be an MMS.

1
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Before we consider the min cut representation, we must first rederive the
results of Section 1 in this more general context. A subset A c A is said

to be an upper set in (or relative to or with respect to) A if x € A and
y € A with y > x implies that y € A. A subset B ¢ A is said to be a lower

set in A if A\B is an upper set in A. Note that A is upper set in A if and
only if A = U n A where U is an upper set (in ]Rn). To see this simply set

U= uU.(x).
EeAQ

2.1 Integral and min path representation

Let ¢: A »~ [0,) be an MMS. As before we set Ut= {xed: o(x) > t} for
all t>0. Then Ut is a Borel measurable upper set in A and Ut c US if

t >s > 0. If we set ¢(x,t) = IUt(i) = 1[0,¢(§)](t) for t > 0, x € A, then
¢ has all the properties as in Section 1; i.e., for fixed t, ¢ is

Borel measureable and nondecreasing in x on A and for fixed x, ¢ is left-
continuous and nonincreasing in t>0. Clearly the following integral repre-

sentation is still valid.

(2.1) Theorem. For x € A, o(x) = f ¢(x,t)dt,
0

(2.2) Remark. It is sometimes convenient to consider the following alter-

native representation. Let U(o)

e = {xen: @(3{_5 > t} and set £(x,t) =1 (x) =
oo = U(o) =
1[0,4’(5))(‘:) for t > 0, x € A. Then ¢(x) = J E(x,t)dt. Note that °©

0
for fixed x, £(x,t) is now right-continuous in t > 0. Note also that

£ < ¢.
(2.3) Proposition. Let A and {A(t): te T} be upper sets in A.

1) u A(t) and n A(t) are upper sets in A.
teT teT

(11) A=y UQ(E) n A,
XeA

(1ii) 1If A is a product set, then the closure of A in A and the interior

of A in A are upper sets in A.

1., .,
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Proof. Again we need only prove (iii). Now the closure of A in A is An A.

So suppose g_eZn A and y > x, ye A. Then there exists <x > < A with x X

Set Xn = 5_0 V y. Since A is a product set, Xne A and so leﬁn A because Z.n"l‘

Let B be the interior of A in A. Suppose x€¢B and y > x with y € A. t1hen
there exists & > 0 such that N (x) nbdcA where NG(E) = {w: Ixi-wi[ < 6 all i}.
We will now show that NG(Z) nAcA also and hence ye B. For let ze¢ NG(X) na.
We define w = (wl,...,wn) by wi = zi if zi < xi and wi = xi if zi ixi.
Since A is a product set, we A. Also z > w. 'Thus if we show that we N, (x),
we are done. But |xi-wi| = 0 if z; ixi and, if z;
X7z Ly;-zL < 8.

(2.4) Remark. It is not hard to show that (iii) fails if A is not a pro-

duct set.

Now let A be an upper set in A. We say that ye¢ A is a lower extreme

point of A relative to A if LQ(y_) nAnA = {y}. We denote the set of all lower

extreme points of A relative to A by Eﬁ(A). Here A is the ordinary closure
of A and so AnA is the closure of A in 4.
In order to obtain the corresponding version of Lemma 1.5 we need that

A is complete in ]Rn. Henceforth we will always assume that A is a closed

n

subset of R .
(2.5) Lemma. Let A be a closed upper set in A which is lower bounded in
4 (i.e., there is an x€ A such that x<y for all ye A). Then for xe 4, it

follows that xe¢ A if and only if x>y for some ye¢ Eﬁ(_A).

Proof. Again we need only prove the "only if" part. So let x= (xl,... ,xn) €A

Define y_o = x and set A1 = AnLQ(_vlo). Its projection Bl = nlAl where

nl(zl,...,zn) =2 is thus a nonempty subset in ]R1 which is bounded below.

Let vy = inf B Hence there exists x = (xlm""’xnm) € Al c A such that

1°

<xpy xpw] o= ez -




-

xlm - y1 as m +» », But the sequence <_)_<m> is bounded in R" and so has a con~-

vergent subsequence. Let 11 be its limit which lies in A, since A is closed.

1
Note that wl < w° and wl =y, <z, for all zcA,. Now set A, = AnL (wl) and
- == 1 1-"1 = "1 2 Q-
let B2 = TTZAZ be its projection where ﬂz(zl,...,zn) = z,. By the same argument,
2 2
there exists w eAz such that v, =, < z, for all z = (zl,zz,...,zn) eAZ,

where v, = inf B Continuing by induction we find that for each i=1,...,n

2
there exists wie A. = AnL (wi—l) such that wi =y z, for all z= (z .2 YEA

=N Q- 1 2= (2paeeenz) € by
where y; = inf Tl’iAi. In particular, then, x = wo 3_31 > . f_gn. We have

y= gn. We claim that ye¢ ELA(A). For suppose that z¢ AnLQ ‘. Then z <y

and ze€ A, If z # y, then it differs in at least one compor . Suppose that

- - . i-1
2y = YyreeesZy 1TVL 1025V Since z < y, we also have that z <w ~. But

oA

2, <Yy contradicts the definition of w . Hence z = y.

As an immediate consequence we get the following theorem.

(2.6) Theorem. Let A be a closed upper set in the closed set A which is

lower bounded. Then A = v kUQ(l) n A and
A
XEEL(A)
2.7) IA(5)= max min o (x) for xeA.
A 1<i<n Y1
yeE (A) -

(2.8) Remarks. (i) Let A be as in Theorem 2.6 and suppose we also have that

I (x) = max min a, (x) for xe< A. Then it is easy to show that if E is
A~ 1,y, — -
yeE 1<i<n i

a subset of A, € > Eé(A); (1i) If we allow E, however, to be a subset of ]Rn,
then it is not necessarily true that E > ELA(A) unless A is a product set.
If we combine the above results we get the following consequence. Let

$: A > [0,) be an MMS. 'Then

o0

(2.9) (x) = J $(x,t)dt
0
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where ¢(x,t) = IU (x) and Ut = {xeA: 9(x) > t}. Now if A is closed and lower
t
bounded and if ¢ is upper semicontinuous on 4, then Ut is a closed upper set

in A which is lower bounded. Hence we can write

(2.10) ¢$(x,t) = max min o, (%) for xe A

yeP, lsizn Vi

where Pt = Eé(Ut)' We summarize below.

(2.11) Theorem. Let A be closed and lower bounded in R" and let ¢: & - [0,=)
be an upper semicontinuous MMS. ‘Then (2.9) and (2.10) are wvalid.

We call (2.10) the min path representation for ¢ on A.

2.2 Special cases

Even though we have obtained a min path representation for ¢ on A, a
min cut representation is not immediate. The problem is that although the
complement of Ut in A is a lower set in A, it is in general open and not closed
in A even if we assume that ¢ is continuous. The material in the previous
section does not extend easily to open sets. One interesting case where the
complement is closed occurs when A is discrete. We shall consider this case
here. We also show how we can obtain useful bounds on the system performance
by making use of the alternative representation (see Remark (2.2)).

Let B ¢ A be a lower set in A. We say that ze A is an upper extreme
point of the lower set B relative to A if UQ(g)rWErWA = {z}. The set of all
upper extreme points of B relative to A is denoted by ES(B). The following

results are proved in an analogous manner as (2.5) and (2.6).

(2.12) Lemma. Let A be a closed set in If& Let B be a closed lower set in

A which is upper bounded. Then for xe A, it follows that xe¢ B if and only

if x < z fcr some z¢ Eﬁ(B).

3




11
(2.13) Theorem. Let B be as in Lemma 2.12. Then B = v A L (z)naA
zeEU(B)

and so
(2.14) 18(5) =  max min Si z (x) for xe A

_z_eEg(B) 1<i<n “*%4
where B (x) =1 1if x, < t and 0 otherwise.

it~ i—

(2.15) Remark. It should be noted that the B defined in this paper is not
the same as the B in Block and Savits (1982).

Suppose now that ¢: A - [0,») is an MMS. Recall the representation

]

o(x) = [ b(x,t)dt
0

where ¢(x,t) = I (x) and U = {x: ¢(x) > t}. We also have the alternative
t
representation (see Remark 2.2)

o0

o(x) = J E(x,t)dt
0

where £(x,t) = I,(0) (x) and Uéo)(g) = {x: ®(x) > t}. SetL = {x: ¢(x)< t}

(o) t (o)

and Lt = {x: ¢(x) < t}. Both Lt and Lt are lower sets in A.

(2.16) Theorem. Suppose A is a finite set in R" and ¢: A > [0,) is an MMS.

We then have the dual representation

(o)

(2.17) ¢(x,t) = max min o, (x) = min max o (x)

. iy, =~ . i,z,
z;Pt 1<i<n i EFKEO) l<i<n i

where Pt = Eﬁ(Ut), KEO) = ES(LEO)) and ai?l(g) =1 if and only if Xy > t,

Proof. We only need prove the second equality because of T heorem 2.11.

(o)

Since A is finite, Lt

is a closed lower set in A which is upper bounded.

Hence, by Theorem 2,13, we can write

PN




-

12
I (x) = max min B (x).
(o) = iz, =
L 4, (o) 1<i<n '
t geEU(Lt )
Consequently,
o(x,t) = 1-1 \X) = min max (1 - B (x))
= (o) = i,z =
L EGKEO) 1<i<n i
= min max afo) (x).

£€K£°) l<i<n %

In the finite case, then, we have both a min path and a min cut representa-

tion (compare with Block and Savits (1982)).

In the general case, however, the set Lﬁo) is not closed. However if

we assume that ¢ is continuous, the set Lt will be closed.

(2.18) Theorem. Let ¢ be a continuous MMS on a compact set A. Then we have
for t > 0 and x € A

(2.19) ¢(x,t) = max min o () > &(x,t) = min max aio) (x)
Xept 1<i<n 7’7i _z_eKt 1<i<n %3

where Kt = ES(Lt) and the other quantities are as in Theorem 2.16,

Proof. Since ¢ is continuous and A is compact, the set L, is a closed lower
set which is upper bounded. Everything follows as in the proof of Theorem
2.16.

Although the representation (2.19) is not exactly what we desire, it
does allow us to give bounds on the system performance function.

Let X = (xl""’xn) be a state vector, i.e., X: @ + A is a random vec-
tor. For each i, set Fi(t) = P(Xiit) and f‘i(t) = l-Fi(t). Let ¢ be a
continuous MMS on A and assume A is compact so that (2.19) holds. We let

F(t) =P(¢(X) < t) and F(t) = P(3(X) > t). We also let F(t-) = P(3(X)>t).

P
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(2 20) Theorem. Let ¢ be a continuous MMS on a compact A and let t>0.

The following bounds always hold:

n
sup P(n {Xizy } < F(t-)
XePt i=1 1

and

n
F(t) < inf P(u x>z, h.
_z_eKt i=1

In order to 6btain further bounds, we need some preliminary definitionms.
(2.21) Definition. Let A < ]Rn. We say that xe¢ A is biregular if for every
§>0, there exists u,ve A such that (1-§)x<u<x<v< (1+§)x. A measurep
on A is said to be biregular if we can write A= AOU Alu Az where AO is count-
able, u(Al) = 0 and every xe¢ 8, is biregular. A random vector X: @ + A is

-1
called biregular if the induced measure u = PoX is biregular.

(2.22) Remark. Clearly every random vector X on a discrete compact set A

is biregular.

(2.23) Definition. Let {at: te T} be a collection of real numbers. We define

i at = inf n at
teT ScT teS
S finite
a_ = sup a_.
t’é‘ﬁ‘ t ScT téls t
S finite

(2.24) Theorem. Let ¢ be a continuous MMS on a compact Ac R" and suppose that
X is biregular. Then for all but a countable set of t, we have the following

results:

Ak dod

i
’
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(a) 1If the Xi are associated,

P(u {X,>z }) < F(t) =F(t-) < P(n {X. >y }.
_z_eKt =1 171 zePt g=1 1774

(b) If the xi are independent,

n - - - J.L n _
n Al F (z)) < F(t) = F(t-) < yeP, L, Fop.

£eKt i=1 ‘

Proof. Since (b) easily follows from (a), we only prove (a). Noy for every

t>0, we have Ut = {xed: o(x) >t} > {xeA: ¢(x) >t} = U(:), Since Zt =
Ut\U(:)= {xeA: ¢(x) = t}, it follows that P(X¢ Ut) = P(ﬁeU(:)) except for
=8 v
(0) m=1 t";
and so given € > O there exists an m such that P(EﬁUt )iP(ﬁeUt_’_l_)+e. We
m

possibly countably many t. We now only consider such t. But U

8 |~

set s = t +
P
PALEY

Pt = EIA‘(Ut). We now use the assumption that X is biregular. Thus

A= Aou Al ) A2 with AO countable, P(X¢ Al) = 0 and every x¢ A2 is biregular.
*

*
We choose a finite subset AOCAO and a compact subset Azc AZ such that

* *
P(Xehy=-4y) <€ and P(Xe A -Az) <e. We thus have

0 2

F(t-) = P(XeU) = P(Re Ph<P(ReU) +e

* *
P(_)_(_eUsnAo) + P(geUsnAz) =3¢,

IA

*
Suppose that x¢ Usn Az. Then ¢(x) >s>t. By continuity of ¢ and the fact that

x is biregular we can find ue A such that u < X and @(1_1_) >t i.e., ue Ut'

Hence there exists ye¢ Pt with y < u which implies that Xe Ua(y) n4d, Thus
*

0.
{UQ(X) ni: ye Pt} is an open cover of the compact mset u,n A2 Let
*
Ug(zl),...,Ug(xm) be a finite subcover: Usn Azc v UQ(yj) nA. Also since
=1 -

* m+l
AO is finite, there exist finitely many y seeesy € Pt such that
* P - P
Ugndgc v UQ(lj) n A, We may thus write F(t-) < P(Xe U UQ(zj)) +3e¢.
j=m+1l y=1

Note that U_ is a compact upper set and U, = v UQ(_Z)n A where

PR

g

I W Y T

q-
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Since the Xi's are assoclated we obtain

F(e-) < | P(ReU 1)) +3 1 e x>yl +3
t-) < Xe €= n 2y €
- #1 = Q j=1 =1 1771

n
P( n {xiiyi}) +3€.
_ZEPt i=1

A

Since ¢ was arbitrary, we are done.

A similar argument works for the lower bound.

3. Applications of the Decomposition

3.1 1he Barlow-Wu structure funétion

As in Block and Savits (1982) we assume there is a binary coherent sys-

tem with min path sets Pl,...,Pp and min cut sets Kl,...,l(k. Then we define

(3.1) ¢(x) = max win x, = min max x

1<x<p iePr 1<s<k ieKS 1

where 0 < x, for 1 = 1,...,n. Here x, need not be integer valued as in

i i
Block and Savits (1982). The function £(x) is the analog of the structure
function considered by Barlow and Wu (1978).

First it is clear that g(t x) = t £(x) for all t > 0. Thus as in
Section 1

Q0

¢ (x) =J z(x,t)dt
0

where z(x,t) = I[O,C(E)](t) = IUC(E) and U= {(x: ¢(x) 3_ t}. Now 1t is easy
to see that Ut = tUl and so z(x,t) = ﬁ(t:'l x,1)for all t > 0. Also
E W) = {z: LQ(E) nU, = {z}}={z: 2(2) > t and for x %2, ¢(x) <t}

= t{z: g(z) > 1 and for x < 2z, ¢(x) <1} = ¢ EL(UI)'

<
+
-]

(3.2) Theorem. z(x) -J t(x,t)dt where
0

- A

[




W
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(x,t) = IU (x)= max min ay (x)
t yeE (U lcicn Y4

= c(at(z))

where at(ﬁ) = (al’t(lc_) sees ,o;n’t(i)) .

Proof. The first and second identities followr from Theorem 1.3 and 2.6.
To establish the last equality we have by the arguments immediately pre-

ceding the theorem that

1 X,1) = max min a (t-l X).

o(x,t) = g(t- {
yeE (U) 1<iem T4

Naw {y: ye EL(UI)} = {min path vectors corresponding to Pl,...,Pr} as is

easily demonstrated. Thus

max min o (t-1 X)

l<r<p ieP 1,1

c(x,t)

= max min o t(5) = (o (x)).
l<r<p iep 77

(3.3) Remarks. i) The above result is the generalization of Lemma 6.3 and
Theorem 6.4 of Block and Savits (19 82). The connection is clear if we no-

tice that Ck(a(_z_)) of that paper is z(x,k).

ii) A similar result is possible in terms of the min max representation if

we have (3.1) for 0 < x -<-Mi’ i=1,...,nby using (2.19).

i

3.2 Represgentation for homogeneous functions

In the finite state case discrete functions of the type (3.1) have been

characterized in Block and Savits(1982). In the continuous case a similar

but more general result canbe obtained for homogeneous functions.

A aa s ada

—harta
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(3.4) Theorem. Assume ¢:[0,=)" - {0,») is a right continuous nondecreasing

function such that ¢ (t x) = t ¢ (x) for all t>0. Then

¢(x) = max min y;lxi
XEEL(UI) yia‘O

w here EL(UI) ={y: ¢(z) >1 and for x§ y,®(x) < 1}.

Proof. From Theorem 1.3 we have

00

o(x) = J ¢(x,t)dt
0

where ¢(x,t) = IU (x) and Ut = {x: 9(x) > t}. Then by Remark (1.9i) we have
t
for t > 0

¢(x,t) = max min @y (x).
y<E (U,) y,%0 241

By arguments similar to those preceding Theorem 4.1 we have for t > 0

¢ (x,t) = max min ay (t-lgc_).
yeE (U) y #0 Yy
By a straightforward argument it follows that

¢(x,t) = I[O, max min y-ilxi] (t)
yek (U) y,*0
and so
o(x) = [ ¢(x,t)dt = max min y-i X
0 XEEL(UI) yi#O

(3.5) Remarks. 1) It is easy to check that the condition of Theorem 3.4 is
equivalent to the condition Ut =t Ul for all t > 0.
ii) A similar representation is pussible using the dual representation of

Section 2.2 under the appropriate assumptions. In particular from (2.19)

for x e 4= {x: 0<x <M, 1= 1,...,n},

e = I:E(g,t)dt
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where
£(x,t) = min max aiol
A, <i< ’
E.EEU\L,;) 1<i<n i
and it follows similarly that
-1
®(x) = min max z,°x,
EEE%(Ll) 1<i<n
X =
-1 0 if 1 o
where z, X, =
b = 1f x>0 and 2, = O,

forzeA

-4
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